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Abstract

In this article a new generalization of the skew student-t distribution was introduced. The two-parameter
model called the type | half-logistic skew-t (TIHLst) distribution can fit skewed, heavy-right tail, and long-
tail datasets. Statistical properties of the type I half-logistic skew-t (TIHLst) distribution were derived and the
maximum likelihood method parameter estimates assessed through a simulation study. A well-known dataset
was analysed, illustrating the usefulness of the new distribution in modeling skewed and heavy-tailed data.
The hazard rate shape was found to be increasing, decreasing and inverted bathtub shaped which was also
reflected in the application result.

Keywords: Entropy; maximum likelihood estimation; simulation; Skew-t distribution; type | half-logistic
distribution.

1 Introduction

The methods of extending the flexibility of various continuous probability distributions are well-known in the
literature. Hence, significant efforts in developing new families of flexible continuous probability distributions
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have been made by several authors over the years due to the inability of the classical probability models to fit
various real-life datasets. Some of the generated families of distributions are: the Gompertz-G family of
distributions by Alizadeh et al. [1], Beta-G family of distributions by Eugene et al. [2] and Jones [3], Weibull-G
family of distributions by Bourguignon et al. [4], Exponentiated generalized-G family of distributions by
Cordeiro et al. [5], Kumaraswamy-G family of distributions by Cordeiro and Castro [6], Gamma-G Type-I
family of distributions by Zografos and Balakrishnan [7], Gamma-G Type-II family of distributions by Ristic
and Balakrishnan [8], Gamma-X family of distributions by Alzaatreh et al. [9], McDonald-G family of
distributions by Alexander et al. [10], Logistic-X family of distributions by Tahir et al. [11], including several
others.

The skew-t distribution introduced as an extension of the symmetric t-distribution has been used extensively
especially in the field of econometric, time series and financial analysis. Numerous authors have introduced
various forms of the skew-t, for example Johnson et al. [12], Azzalini and Capitanio [13], Sahu et al. [14], Gupta
[15] and others. Also, several authors have studied possible extensions and generalizations of the skew-t
distribution which include the Kumaraswamy skew-t distribution by Khamis et al. [16], Balakrishnan skew-t
distribution by Shafiei and Doostparast [17], generalized hyperbolic skew-t distribution by Aas and Haff [18],
Beta skew-t distribution by Shittu et al. [19], Exponentiated skew-t by Dikko and Agboola [20] and beta skew-t
distribution by Basalamah et al. [21].

This article focuses on extending the skew-t distribution by adding a parameter (shape) to increase its flexibility
and efficacy to real-life data sets. The motivation in developing the new distribution is to create a flexible
heavy-tailed distribution with right-skewed, and unimodal features. The proposed distribution can serve as an
alternative error innovation in modeling and forecasting financial return series using GARCH models. This
article is structured as follows: In section 2, the new distribution called the TIHLsr distribution is introduced.
Section 3; presents some statistical properties of the TIHLsr distribution. In Section 4, we have estimates of the
unknown parameters using the maximum likelihood estimation procedure and the simulation study. In section 5,
we illustrate the usefulness of the TIHLst distribution using two real-life datasets. Conclusion in section 6.

2 Type | Half-Logistic Skew-T Distribution

Jones [22], and Jones and Faddy [23] established a tractable skewed extension of the symmetric student-t
distribution known as the skew student-t (skew-t) distribution. The skew-t distribution cumulative distribution
function (CDF) is given as

Gsr (y)=%[1+ J }1 77>0,y€(—00,oo) (1)

Jn+y?

The probability distribution function (PDF) obtained by differentiating (1) is given as

A
gST (y) = 2 3/2 (2)
2(77 +y )
where 7 is the skew parameter.
Cordeiro et al. [24] introduced the CDF of type-1 half-logistic family of distributions which is expressed as
- 1-[1-G(yix) [’
—Iog[l—G( , )] 20e " [
F(y.(/’,K):IO v % dy:( ), ©)

(1+ e )2 (1+[1—G(y; K)]w)

The PDF by differentiating (3) is given as:
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209 (y;K)<[1—G(y; K)]“”1>

f(y,0.6) = rant “)
{1+[1—G(y;1<)]¢}

where ¢ > 0 is the shape parameter, G(y;zc) and g ( Y, K‘) are the parent distribution CDF and PDF depending

on the parameter (K‘) vector. A two-parameter model called the type I half-logistic skew-t (TIHLst) distribution

is proposed. The PDF of the TIHLsr distribution is obtained by inserting Equations (1) and (2) into Equation
(4):

> . @, >0,ye(-0x) (5)

_ . , "
1- 1—[{1+ H
F(y,v) = = i — ,go,77>0,ye(—oo,oo) (6)
1 y
1+1-| 2| 1+
i [2[ Nm+y? D

where ¢ is the shape parameter and 7 is the skew parameter.

The survival function is defined as s(y)=1—F(y), given a random variable Y. Hence, the survival function
s(y) of TIHLsr distribution is given as:

The hazard rate function h(y), reversed hazard rate function r(y), cumulative hazard rate function H ()
and odds function O(y) are respectively, given as:

h(y) = sl

2(77+ yz)s/2 1+(1— y

) )
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r(y)_ 20 !
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O(y)=
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To show the efficacy of the TIHLst distribution, Fig. 1 and Fig. 2 presents the PDF plot and hazard rate plot for
some designated values of the parameters. We observed from the graphs in Fig. 1 that the PDF is symmetrical,
right-skewed and heavy-tail depending on the chosen parameter values while the hazard rate function is
increasing, decreasing, and inverted bathtub shaped as depicted in Fig. 2.
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Fig. 1. PDF plots of the TIHLsT for designated values of the parameters
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Fig. 2. Hazard rate function plots of the TIHLst for designated values of the parameters
3 Statistical Properties
In this section, we derive the structural properties of the TIHL st distribution.

3.1 Quantile function

The quantile function Q(u)=F (y)fl for u e (0,1) of the TIHLsr distribution is given by:

_1—2(1"”}%’
1 1+u
Q(u)=n?—= T ue(0D). @
i) ] |
1+u

The median Q(0.5) is derived by setting u =0.5in (7). Moreso, the other quantiles can be derived similarly by

setting u=0.25and u=0.75.

(1-(08))
, 1_2[1+(0.5)J
Q(05)=7n? —= = ue(0). ®)
1-(08)) | |
- 1_2(1+(0.5)]
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We can use the TIHLsr quantile function (7) for generating random values from the TIHLsr distribution. The
Bowley skewness by Kenney and Keeping [25], and Moor’s kurtosis by Moor [26] are as follows:

3. o[ L. 1,
S _Q(4,¢wj 2Q(2,¢1UJ+Q(41(P,UJ

k Q[j:(p.nj—QG;%n)

K_Q[;:(p,n]—o(z;w,nj—Q[g:w,n}Q@;w,nj

Q[ Si0n)-o Zion)

where Q(.) represent the quantile function. Using the TIHLst quantile function (7), the numeric values of the

median (M), 25" and 75" percentiles, interquartile range (IQR), kurtosis (Ks), and skewness (Sk) for some
chosen parameter values are provided in Table 1. It is clear that as the values of 7 increases at specific values of

¢ ; the median, 25™, and 75™ percentiles, and IQR increases while the skewness and kurtosis remain constant.
Moreso, across different values of ¢, the skewness and kurtosis decreases indicating positive and negative
properties, respectively.

Table 1. Descriptive statistics of the TIHLsT distribution

4 U M 25t 75t Sk Ks IOR
0.2 0.3 4.243 0.864 35.501 0.805 6.422 34.637
0.5 5.477 1.115 45.831 0.805 6.422 44.716
0.9 7.348 1.496 61.689 0.805 6.422 59.993
1.2 8.485 1.727 71.001 0.805 6.422 69.274
15 9.487 1.931 79.382 0.805 6.422 77.451
2.0 10.954 2.230 91.662 0.805 6.422 89.433
0.4 0.3 0.974 0.270 3.082 0.499 1.865 2.811
05 1.258 0.349 3.979 0.499 1.865 3.630
0.9 1.687 0.468 5.338 0.499 1.865 4.870
1.2 1.949 0.540 6.164 0.499 1.865 5.624
1.5 2.179 0.604 6.892 0.499 1.865 6.288
2.0 2.516 0.697 7.958 0.499 1.865 7.260
0.6 0.3 0.507 0.081 1.303 0.303 0.876 1.222
0.5 0.655 0.105 1.683 0.303 0.876 1.578
0.9 0.879 0.140 2.258 0.303 0.876 2.117
1.2 1.015 0.162 2.607 0.303 0.876 2.445
1.5 1.134 0.181 2.915 0.303 0.876 2.734
2.0 1.310 0.209 3.366 0.303 0.876 3.156
0.7 0.3 0.394 0.020 0.994 0.232 0.621 0.975
05 0.508 0.025 1.284 0.232 0.621 1.258
0.9 0.682 0.034 1.722 0.232 0.621 1.688
1.2 0.787 0.040 1.989 0.232 0.621 1.949
1.5 0.880 0.044 2.223 0.232 0.621 2.179
2.0 1.017 0.051 2.567 0.232 0.621 2.516
15 0.3 0.021 -0.255 0.279 -0.036 -0.083 0.534
0.5 0.027 -0.330 0.360 -0.036 -0.083 0.690
0.9 0.036 -0.442 0.483 -0.036 -0.083 0.925
1.2 0.042 -0.511 0.557 -0.036 -0.083 1.068
1.5 0.047 -0.571 0.623 -0.036 -0.083 1.194
2.0 0.054 -0.660 0.719 -0.036 -0.083 1.379
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3.2 Asymptotic behaviour

The limits of the TIHLsr density function (PDF) are given by

lim f(y)=lim f(y)=0

)’*)JJC y~)+00
Proof:

For y — o, we have

. . 1 y ” 1 y |
limf (x)=1lim| 2¢ 432 1- —{1+ H 1+ 1—[—{1+ B , =0 (©)]
y—>0 ( ) y—>0 2(77+y2)/ [ [2 77+y2 2 fn_}_ y2

Similarly, for y — —0, we have

lim £ (x)= lim| 29 2(77+y2)3/2 {1-[%[“%}]} 1{1{%[1+ﬁm . =0 (10

The results of the asymptotic behaviour infer the THILst mode is unique and presented fully in the Appendix.
3.3 Mixture representations

The series expansion of the TIHLsr distribution is derived for the density and cumulative functions. If |S| <1

and K a positive real non-integer, the generalized binomial theorem representation is given by:

40L& (k=1 .

(1-9)" =Z(—1)’[ - JS’ (11)

j=0 J
According to Cordeiro et al. [24], expansion of the PDF, applying the series expansion (11) in (5) leads to
f(y.0)=2.> b.Py (¥in7) (12)

¢=0d=0

d
where, b, =(-1)" Z(p(c+1)(¢(c+l)_lj and P, (y,n) = Ly 1[“%] .
d 2(77+ yZ) 2 2 ,774_ y

f (y,v) reveals the PDF expression is likely an infinite linear combination of the skew-t density-functions.

Thus, we can obtain the statistical properties of the TIHLst distribution from the properties of the skew-t
distribution. Also, another expanded form of the PDF is given by

fly.0)=w4.¥ (7+y* )’(ET] .
where, w,,, =27 3 3 (-1 (c+1)(<"(°zl)—lj£‘i ]

The CDF of the TIHLsy distribution by simplifying (6), is given by
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F(y,0)=-1+2 ! (14)

b

Using (14), the expansion of [F(y,u)]S , Where s is positive integer, is given by

[F(y.0)] ZZ .G, ( (15)

q=0 w,z=0

s—Q+2 S - W
where, 9,,, =(-1) ‘ Zq( )( V\?j((oz j and Gz(y,n):[%[u y B denote the cumulative density

q \fﬂ+ y?

function of the skew-t distribution with power z > 0. Another expanded form of [F (y,u)]S is given by

[FOo)f =80 (7+Y? )_@ (16)
w=g £ 0= (O

where, &,

3.4 Moments

Let Y be a random variable which follows the TIHL; ((p,?]) , then the g™ raw moment of Y is given by
uy={"yow w,o.y (n+y?) P oy 17)

Taboga [27] showed that (17) can be rewritten as:

e+3,
ty = (1 (<2)° g, [y (m+y )( % gy (18)
After some algebra, the g'" moment of Y, using the Beta function expression B I yo" 1+ y 7 dy is
given by
g-2 _
, cdeUZB(ngeJrl,z_gj g =even
Uy = ' 2 2 (19)
0 g =odd
c+ - d
- EE el )
c,d= O

Let Y be a random variable which follows the TIHL; (¢,77), then the g™ incomplete moment for any t > 0is
given by

t)= [y W0y ( (n+y?) " ay (20)
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After some algebra, the r" incomplete moment of Y, using the Beta function expression
B(z,6,7)= J: y**(1-y) " dy is given by

92 -
2 (1) =Wo.1 ° B(t,—g +Ze+1,—229j (21)

where W, , = % Z (-1 (C+1)(¢(Czl)—1](d]

e
Remark: The first incomplete moment ¢/ (t) = j; yf (y)dy of TIHLsy distribution can be obtained by inserting
g =1 in (21).

3.5 Probability weighted moments

An important mathematical quantity is the probability weighted moment (PWM). The PWM z, . of a random
variable Y is given by

7 =E[YE () [=[ Ty f (n)(F(y)) o (22)

Inserting (13) and (16) in (22) using the expression by Taboga [27], the PWM of the TIHLsr is given as:
e+u+3

Tys = (l+ (-1)° )Iom ATxoreru (n +y? )_( 2 J dy (23)

where A" =w_, .9

c,d,e”q,w,z,u

After some algebra, the PWM of the TIHLsy, wusing the Beta function expression
B(6,7)= .fom y**(1+y) "7 dy is given by

2 2
0 g = odd

9.8

9-2 —
INER g+e+u+1,2 g g = even
(24)

3.6 Order statistics

Let Y,,Y,,...,Y, be a random sample from a continuous distribution and Y, <Y, <...<Y,,, are the order
statistics obtained from the sample. The r™" order statistic Y, is defined as

fr:n (Y) :&)[G(y)]r_l [1_G(y):|n_r (25)

B(r,n-r+1

where r>0, ye(—0,2),G(y) and g(y) are the CDF and PDF of THHLsr distribution, B(.,.) represent the

beta function expression. Given that 0 <G(y)<1for y >0, the expression in (25) can be rewritten as:

n-r

L) s TemT e (2o

1=0
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Inserting (5) and (6) in (26), applying series expansion. The rt" order statistics for TIHLsr distribution is given as

1 (z+3)
fen(Y)=or———=9 27
r.n(y) B(r,n—r+1) I,c,d,v,zy (77+y) ( )
on ST & erdsy (N=TY(r+1=1\(r+1+d )\ @(c+d+1)-1)(V
where, ., =055 3 3y (MU

Remark: The smallest and largest order statistics is derived by setting r =1 and r =n in (27). Therefore, the
smallest order statistics is expressed as

()=t gy (v ) 29)

77”_1 L& l+c+d+v n-1)(1 1+l+d ¢(C+d+1)_l v
where, S'Cd”:Z_vho;ngz:o(_l) ( I j(c d v ’

The largest order statistics is expressed as

1
B(n.1)

e 19|cdvz= Zz.:li y (_1)|+C+d+v(nl_nj(n+l—1j[n+:j+d][go(c+d +1)_1J(V]

C Vv yA

fon (V)= Geavsy (1+Y° )’(%j (29)

3.7 Entropies

The variation of uncertainty in a random variable is normally measured by the entropy. The Rényi entropy IR( 5)

is expressed as:

)=_|ogj ) dy, 5>0and §#1 (30)

Using the PDF mixture representation of TIHLst distribution in (13), f (y)(y is given as:

o _(e+39,
F) =w o (e y?) ) (31)
) & 3 26+c-1\(p(c+5)-5)(d
where w, G —1)™ ¢
Bl cZer:( [ c ]( d J(e]
Hence, the Rényi entropy of the TIHLsy distribution using the expression by Taboga [27], is expressed as:
1 o (*+%%2)
IR((s)—Blog((H( 1) ) W Y (my?)T 7 dy (32)
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Using the expression of the Beta function B(&,y) :_[OM yot 1+ y)’(H dy. The Rényi entropy of the TIHLsr

distribution is given as:

135 _
L= 1 logd Wee 2 B(e—ﬂﬂj g =even
RO) 1 g 0g 2 2 (33)
0 g =odd
Furthermore, the g-entropy is defined as
1 +o0 5
H, =nlog(1—Lo £(y) dy), 5>0 and 5%0 (34)
where 6 =q
Hence, the g-entropy of TIHLst distribution is given as
¥ e+l 36-1
2 B —,—— =even
H, zéillog 1| { WeaeTl ( 2 2 j g-ev (35)

0 g =odd
4 Model Estimation

4.1 Parameters estimation

Let Y.,Y,,...,Y, be a random sample from the TIHLsr distribution with unknown parameter vector v = ((p,?])T .
The log-likelihood function, say |, is given as:

I =logL(v)=nlog 2<p+nlogn—nlogZ—3/22n:Iog(77+y2)+(<p—1)znllog(l—%[l+ y _ ]
i=1 i=1 77+y

4
n 1 y
2> log|1+|1-=|1+
% [ 2[ i+’ }J

Taking the partial derivative of the log-likelihood |, with respect to ¢ and 7 equating to zero, the following
normal equations are obtained as follows:

(36)

1+
- =4
op ¢ S 2 Jn+y? i 1 “
1+ 1- 2] 1+ ———
\o+y

Ti_YB =0 (37
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n

o n 3 1 . y
— =) ———+(p-1
on n Ziz:l:(n-i-yz) ( )i:1 2132 1 y
An+y?) 1= 1+
2 n+y?

1 y ) (38)
X[l—[l-ﬁ- ]J
n 2 2
3 \n+Yy 0

o y)” [L;{HJU-{_YZH 1{1_;{1+\/771_WDQ

The non-linear equations (37) and (38) are solved numerically via iterative methods using statistical software
such as R, MATLAB, Maple. The maximum likelihood estimates (MLES) are asymptotic normally distributed

ie., \/ﬁ(&—a,i—ﬂ)m NZ(O,Z), where X is the variance-covariance matrix obtained by inverting the

observed Fisher information (F) given as follows:

%l ol
o' dgon
I
ogon  on®

For each parameter of TIHLsr distribution, the asymptotic (1—r)100% confidence intervals are estimated with

RN
EYAN .

where, upper 7" percentile of the standard normal distribution is Z_.

4.2 Simulations study

In this section, the efficiency and flexibility of the TIHLsr distribution is appraised using simulation study. The
simulation is carried out as follows:

= Data are generated using the quantile function of the TIHL st distribution.

1
l_z(l—ujw
1+u
1
1\? |2

1- 1—2(“’)“’
1+u

where (u) is uniform random numbers with parameter (0,1).

=  The selected parameter values are set as follows: (¢,77)=(1.2,0.7),(1.5,1.0),(1.7,1.2),(2.0,1.5)

»  The selected sample sizes are n = 30,50,150, 250,300 and1000 .
= Generated 10,000 samples for each sample size.

32



Adubisi et al.; AJPAS, 14(4): 21-40, 2021; Article no.AJPAS.73275

The performance of the estimates is evaluated through the average estimates (AE), absolute bias, variance, mean
square errors (MSE) and root mean square errors (RMSE) for the different sample sizes. The absolute bias, MSE

and RMSE are computed for S =(,7) using

AbsBias, = ‘l
N

S(s-s)

i=1

N

18
RMSE, = -3 ($ -s)’

i=1

The simulation results for the average MLEs, absolute bias, variance, MSEs, and RMSEs for different
combinations of the parameters @ and n are given in Table 2. These estimates are sensibly consistent and

approach the parameter values as the sample size increases. The absolute bias, variance, MSEs and RMSEs
decrease for all parameter mixtures as the sample size increases which implies that the TIHLsr parameter
estimates are very much closer and the maximum likelihood method better estimated the true parameter values
as the sample size increases.

Table 2. Mean, absolute bias, variance, RMSE and MSE

(p=1.2,7=0.7)
n Par Mean AbsBias Var MSE RMSE
30 4 1.2194 0.0194 0.0563 0.0566 0.2380
n 0.7384 00384 0.1354 0.1369 0.3700
50 4 1.2101 0.0101 0.0326 0.0327 0.1809
n 0.7210 0.0210 0.0777 0.0781 0.2795
150 @ 1.2022 0.0022 0.0107 0.0107 0.1033
n 0.7060 0.0060 0.0240 0.0240 0.1549
250 @ 1.2018 0.0018 0.0063 0.0063 0.0796
n 0.7045 0.0045 0.0140 0.0140 0.1183
300 @ 1.2016 0.0016 0.0053 0.0053 0.0727
n 0.7036 0.0036 0.0117 0.0118 0.1084
1000 4 1.2006 0.0006 0.0016 0.0016 0.0399
n 0.7017 0.0017 0.0035 0.0035 0.0591
(p=157=1.0)
n Par Mean AbsBias Var MSE RMSE
30 4 1.5235 0.0235 0.0781 0.0786 0.2804
n 1.0349 0.0349 0.2253 0.2265 0.4760
50 @ 1.5122 0.0122 0.0450 0.0450 0.2125
n 1.0185 0.0185 0.1313 0.1317 0.3629
150 @ 1.5025 0.0025 0.0147 0.0147 0.1211
n 1.0046 0.0046 0.0408 0.0408 0.2021
250 @ 1.5019 0.0019 0.0086 0.0086 0.0929
n 1.0036 0.0036 0.0238 0.0239 0.1544
300 4 1.5018 0.0018 0.0072 0.0072 0.0848
n 1.0029 0.0029 0.0199 0.0199 0.1412
1000 4 1.5006 0.0006 0.0022 0.0022 0.0465
n 1.0016 0.0016 0.0059 0.0059 0.0769
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(¢ =17,n= 1.2)
n Par Mean AbsBias Var MSE RMSE
30 @ 1.7287 0.0287 0.0939 0.0947 0.3078
n 1.2321 0.0321 0.2924 0.2935 0.5417
50 @ 1.7150 0.0150 0.0539 0.0541 0.2326
n 1.2165 0.0165 0.1716 0.1719 0.4146
150 @ 1.7033 0.0033 0.0175 0.0175 0.1322
n 1.2036 0.0036 0.0536 0.0536 0.2315
250 @ 1.7023 0.0023 0.0102 0.0102 0.1012
n 1.2030 0.0030 0.0313 0.0313 0.1770
300 @ 1.7022 0.0022 0.0085 0.0085 0.0923
n 1.2025 0.0025 0.0261 0.0261 0.1617
1000 @ 1.7007 0.0007 0.0026 0.0026 0.0506
n 1.2014 0.0014 0.0077 0.0077 0.0880
(p=2.0,7=15)
n Par Mean AbsBias Var MSE RMSE
30 @ 2.0397 0.0397 0.1212 0.1227 0.3504
n 1.5275 0.0275 0.4073 0.4081 0.6388
50 @ 2.0213 0.0213 0.0687 0.0692 0.2630
n 1.5134 0.0134 0.2402 0.2404 0.4903
150 @ 2.0051 0.0051 0.0221 0.0221 0.1486
n 1.5024 0.0024 0.0754 0.0754 0.2746
250 @ 2.0033 0.0033 0.0129 0.0129 0.1135
n 1.5021 0.0021 0.0442 0.0442 0.2102
300 @ 2.0031 0.0031 0.0107 0.0107 0.1035
n 1.5018 0.0018 0.0367 0.0367 0.1917
1000 @ 2.0008 0.0008 0.0032 0.0032 0.0567
n 1.5012 0.0012 0.0109 0.0109 0.1043

5 Applications

To illustrate the flexibility and efficacy of the TIHLsr distribution. The dataset on ordered failure of
components: 0.0418, 0.0473, 0.0834, 0.1091, 0.2031, 0.2099, 0.004, 0.6143, 0.2918, 0.3465, 0.4035, 0.0142,
0.0221, 0.0009, 0.2168, 0.0261, 0.1252, 0.1404, 0.1498, 0.175, 0.2031, 0.2099, 0.6143, previously used by
Ramadan et al. [28] is analysed. The descriptive statistics of the dataset are provided in Table 3. It is obvious
that the first and second datasets are highly positively skewed.

Table 3. Descriptive statistics of the first and second datasets

n Mean Median Standard deviation Skewness Kurtosis
First data 20 0.161 0.133 0.157 1.330 1514

The TIHLst distribution is compared with other competitive distributions such as the half logistic skew-t
(HLST), skew-t (ST), and Fréchet (FT) distributions. The performance measures are applied using the R-
software package “AdequacyModel” to evaluate the fit of the distributions specified above. The distribution
parameters are estimated using the maximum likelihood estimation procedure. The following performance
measures: Hannan-Quinn information criterion (HQIC), log-likelihood (LL), Akaike Information Criterion
(AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC) including
Anderson Darling (AD), Cramer-von Mises (CVM), Kolmogorov-Smirnov (K-S) statistic and their p-values are
provided in Tables 4 and 5. The distribution is of a good fit if all the performance measures are smaller and the
p-values are larger. Lastly, Table 6 presents the TIHLst model parameter 95% and 99% confidence intervals for
the dataset.
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Table 4. MLEs (SE) and performance measures
for the dataset

Model MLE AIC CAIC BIC HQIC Rank
TIHLsT ¢ =0.4694 -15.886 -15.179 -13.894 -15.497 1

(0.1191)
7 =0.0029
(0.0022)
HLst 7 =0.0248 12579 -12.356 -11.583 -12.384 3
(0.0119)
ST 5 =0.0393 -1.588 -1.365 -0.592 -1.393 4
(0.0194)
FT ¢ =0.5160 -13.858  -13.152 -11.866 -13.469 2
(0.0781)
5 =0.0321
(0.0148)

Table 5. Performance measures for the dataset

Model LL CVM  p-value (CVM) AD p-value (AD) KS p-value (KS)
TIHLst  9.943 0.208 0.7 1.39 0.6 0.202 0.34
HLst 7.289 0.362 0.31 2.06 0.31 0.336 0.016
ST 1.794 0.706 0.035 2.96 0.12 0.502 3.412e-05
FT 8.929 0.216 0.69 1.67 0.46 0.196 0.300

From the results in Tables 4 and 5, the performance measures of the TIHLgst distribution are smaller when
compared to other fitted distributions, so we infer that the TIHLsr distribution provides a better fit than the other
distributions. The flexibility and fitness of the TIHLsr distribution is visible from Fig. 4. It is clear that TIHLst
distribution provides an appropriate fit for the dataset based on the density function, distribution function and P-
P plotin Fig. 4.

Furthermore, the hazard rate plot of the TIHLst distribution, using the parameter estimates in Table 4 is also
depicted in Figure 4. The hazard rate shape based on the OEst parameter estimates is increasing, decreasing and
inverted bathtub shaped. The results in Table 6, shows that the parameter estimates fall within the 95% and 99%
confidence intervals.

Table 6. TIHLsT distribution parameters confidence intervals
for the dataset

Cl 4 n
95% [0.2353 0.7069] [—0.0015 0.0075]
99% [0.1619 0.7803] [—0.0029 0.0089]
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Fig. 3. Fitted density function plot (top left panel), distribution function plot (top right panel), probability-
probability (PP) plot (bottom left panel) and hazard rate function plot (bottom right panel) of the TIHLsT
distribution

6 Conclusion

This article presents a two-parameter distribution known as the type | half-logistic skew-t (TIHLsr) distribution
using the type | half-logistic transformation. The flexibility of the skew-t distribution is improved using this
transformation. The structural properties such as the reliability analysis, failure rate function, reversed hazard
rate function, cumulative hazard rate function, odds function, raw moment, quantile function, asymptotic
behaviour, series expansion, probability weighted moments, order statistics and entropies of the TIHLst
distribution are derived. The type | half-logistic skew-t distribution parameter estimates were derived using the
maximum likelihood estimation method and simulation studies carried-out to evaluate the finite sample
performance of these parameter estimates showed that the parameter estimates were consistent and approached
the true parameter values as the sample size is increased. More so, the application using a real dataset indicates
that the TIHL st distribution outperformed the other competing distributions and estimates of the parameters fall
within the confidence intervals as indicated. In future research, the new TIHLsr distribution will be used as the
distributed innovations distribution for the GARCH volatility modeling of financial return series. The research
study will compare the performance of the TIHLst distributed innovation to existing error innovations such as
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the normal distribution, Student-t distribution, generalized error distribution, and its skew variants in modeling
and forecasting asset returns volatility.
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Appendix

The asymptotic behaviour of the type-I half logistic skew-t (TIHLst) distribution is derived in full details.

Firstly as y — —0,
_ ot
1 y
20— ll1-| 2|1+
[2(77+x2)3/2] {2[ n+x B]
lim f(y)=lim .

y—>—© y—>—0 4
1 y
1+)1-| =| 1+
[ {2 Jn+x m

It is obvious that lim n =0. Hence,

—— 2(77+ y2)3/2

lim £ (y)=0x lim 2‘”[1_[%[“#_# m 1{1{%[1+Jf7-y+_xz m -

Therefore, as y — -0

lim f(y)=0

y—>—0

Secondly as y — 4o,

B ) s |

y—>+0 y—>+00 4
1 y
1+)1-| =| 1+
[ {2 X m }

It is obvious that lim 7
y—>+0 2(77+y2)

lim £(y)=0x lim 241—[%[“\/%}]]" 1{1{%[1+ﬁm¢ -0
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Therefore, as y — +oo

lim f(y)=0

y—+0

This implies that the proposed TIHLsr distribution has at least one mode.
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